The three lines lx+my+n=0,mx+ny+l=0,nx+ly+m=0 are concurrent if
l=m+n
m=l+n
n=l+m
l+m+n=0
Condition for concurrent of three lines :
Three lines lx+my+n=0,mx+ny+l=0,nx+ly+m=0 are concurrent.
So, that means those three lines meet at a common point and lmnmnlnlm=0
Thus,
l(mn-l2)-m(m2-nl)+n(ml-n2)=0⇒3lmn-(l3+m3+n3)=0⇒l3+m3+n3-3lmn=0⇒l+m+n=0[l3+m3+n3=3lmn⇒l+m+n=0]
Hence option (D) is the correct option.