The correct option is A 27ay2=2(x−2a)3
Let P(x1,y1) be any point.
Equation of any normal is y=mx−2am−am3
If it passes through P then y1=mx1−2am−am3
⇒am3+(2a−x1)m1+y1=0, which is cubic in m.
Let m1,m2m3 be its roots. Then m1+m2+m3=0,m1m2+m2m3+m3m1=2a−x1a
Normal meets the axis (y=0), where 0=mx−2am−am3⇒x=2a+am2
∴ Distances of points from the vertex are 2a+am21,2a+am22,2a+am23
If these are in A.P., then 2(2a+am22)=(2a+am21)+(2a+am23)⇒2m22=m21+m23
⇒3m22=m21+m22=(m1+m2+m3)2−2(m1m2+m2m3+m3m1)=−2(2a−x1)a
∴m22=−2(2a−x1)3a
But y1=m2(x1−2a−am22)⇒y21=m22(x1−2a−am22)2=(x1−2a)327a
Locus of P is 27ay2=2(x−2a)3.