z1=(x1+iy1)=(x1,y1)
az1+bz2+cz3=(ax1+bx2+cx3)+i(ay1+by2+cy3)=0
Above relation implies that
ax1+bx2+cx3=0
ay1+by2+cy3=0
a+b+c=0 (given)
Eliminating a,b,c we get
∣∣
∣
∣∣x1x2x3y1y2y3123∣∣
∣
∣∣=0 or 12∣∣
∣
∣∣x1y11x2y21x3y31∣∣
∣
∣∣=0
∴ Δ=0 i.e., the points are collinear.