The three sides of a trapezium are equal, each being 8cm. The area of the trapezium, when it is maximum is ?
Area of Trapezium =AB×AE+2×12(DE×AE)
△=8×8sinθ+(8cosθ×8sinθ)
=64sinθ+64cosθsinθ
=64sinθ+64sin2θ2
△=64sinθ+32sin2θ
Differentiate w.r.t θ
d△dθ=64cosθ+2×32cos2θ
Equate d△dθ=0
64cosθ+2×64cos2θ=0
cosθ+(2cos2θ)=0
cosθ+2(cos2θ−1)=0
2cos2θ+cosθ−1=0
(2cosθ−1)(cosθ+1)=0
cosθ=12orcosθ=−1
θ=π3orθ=π
Hence 0 cannot be π or else the Triangle ADC would not been formed.
Since θ is an angle of Triangle θ<π
∴θ=π3
Therefor area is maximum when θ=π3
△=64sinθ+32sin2θ
=64sin(π3)+32sin(π3)
=64√32+32√32
△=48√3cm2
Hence option B is correct.