The correct option is D 43√3
(^i+^j)×(^j+^k)=^i−^j+^k
⇒ Unit vector perpendicular to the plane of ^i+^j and ^j+^k is 1√3(^i−^j+^k)
Similarly, other two unit vectors are 1√3(^i+^j−^k) and 1√3(−^i+^j+^k)
⇒Volume=[^n1 ^n2 ^n3] =13√3∣∣
∣∣1−1111−1−111∣∣
∣∣
=43√3
Alternatively,
Let →a=^i+^j; →b=^j+^k
and →c=^k+^i
Now, [→a×→b,→b×→c,→c×→a]
=[→a→b→c]2
=∣∣
∣∣110011101∣∣
∣∣2
=[1(1)−1(0−1)]2=4
Hence, actual volume with unit vectors
=4|→a×→b||→b×→c||→c×→a|
Now, |→a×→b|=√→a2→b2−(→a⋅→b)2=√4−1=√3
∴Vactual =43√3