The correct option is
B 12α△θTTime period of pendulum (simple)
T=2π√lgl=initial length of pendulum.
Now, coefficient of linear expansion of a wire α can be defined as,
α=increaseinlengthtemperaturechanged×initiallength
⇒Increase in length=α×(Change in temperature) ×(Initial length)
⇒Increase in length=α×△θ×l
So, new length of wirel′=l+α△θl=l(1+α△θ)
So, now the time period is T′=2π√l′g
√l′=√l(1+α△θ)12
As, α and △θ are very small, with respect to 1
So, (1+α△θ)12≈(1+12α△θ)
We neglect the higher order term. So, √l=√l(1+12α△θ)
and, T′=2π√lg(1+12α△θ)=T(1+12α△θ)
⇒T′=T+12α△θT
⇒T′−T=Changeintimeperiod=12α△θT