We have,
C(x)=x2+75x+1600
¯C(x)=C(x)x
¯C(x)=x2+75x+1600x
¯C(x)=x+75+1600x
Now,
¯C′(x)=d¯C(x)dx
=1−1600x2
For the minimum average cost C′(x)=0
1−1600x2=0
x=40
Now,
¯C"(x)=d2C(x)dx2
So, 3200x3>0 [for x=40]
Therefore, it is minimum.
Therefore, the minimum average cost
¯C(x)=40+75+160040=155
Therefore, CA=155
Now, we find marginal cost i.e.,
Cm=dCdx
Cm=ddx(x2+75x+1600)
Cm=2x+75
Put x=40, we get
C−m=2×40+75
Cm=80+75=155
Thus, CA=Cm for x=40
Hence, this is the answer.