The total number of integral values of x, which satisfy (√3+1)2x+(√3−1)2x=23x is equal to
A
1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A1 (√3+1)2x+(√3−1)2x=23x ⇒(√3+1)2x⎡⎣1+(√3−1√3+1)2x⎤⎦=23x ⇒⎡⎣1+(√3−1√3+1)2x⎤⎦=23x(√3+1)2x ⇒1+(√3−1√3+1×√3−1√3−1)2x=23x(√3+1)2x........... rationalization
⇒1+(3+1−2√32)2x=8x(3+1+2√3)x ............. Using (a−b)2=a2−2ab+b2 and a2−b2=(a−b)(a+b) ⇒1+(2−√3)2x=(42+√3)x ⇒1+(2−√3)2x=(42+√3×2−√32−√3)x ........... rationalization ⇒1+(2−√3)2x=(8−4√34−3)x............. Using a2−b2=(a−b)(a+b) ⇒1+(4+3−4√3)x=(8−4√3)x