The total number of ordered pair (x,y) satisfying |x|+|y|=4,sin(πx23)=1 is equal to :
Given that,
|x|+|y|=4 ...... (1)
And
sin (πx23)=1 ...... (2)
So,
sin (πx23)=sin (π2) ∴ sin θ=1
Now,
πx23=2nπ+π2 ...... (3)
It is positive, so, n∈ I
n≥0
n=0, 1, 2, 3, 4 ......
πx23=π2
x2=32
x=±√32
Now,
|x|+|y|=4
∣∣∣±√32∣∣∣+|y|=4
y=4−√32
So, put n=1, in equation (3) and we get.
πx23=2π+π2
x2=152
x=±√152
Now,
|x|+|y|=4
∣∣∣±√152∣∣∣+|y|=4
y=4−√152
Put
n=2,in(3)
πx23=4π+π2
πx23=9π2
x2=272
x=±3√3√2
So,
| x | + | y | =4
∣∣∣±3√32∣∣∣+|y|=4
y=4−3√32
Hence, the total number of ordered pair (x,y) is 3.
Hence, this is the answer.