The correct option is A 685
As 15<x1+x2+x3≤20
x1+x2+x3=16+r, r=0,1,2,3,4;
Now the number of positive integral solution of above equation is:
= 13+r+3−1C13+r= 15+rC13+r= 15+rC2
Thus the total number of solution is :
4∑r=0 15+rC2= 15C2+ 16C2+ 17C2+ 18C2+ 19C2
=12((15×14)+(16×15)+(17×16)+(18×17)+(19×18))
=685