The total number of solutions of cosx = √1−sin2x in (0, 2π ) is equal to
2
cos x = √1−sin2x = √cos2x+sin2x−2sinxcosx
= |sinx - cosx|
Case1: sinx ≤ cosx
⇒ cosx = cosx - sinx ⇒ sinx = 0
Where x ∈ (0, π4) ∪ ( 5π4, 2π)
⇒x = 2π neglecting x = π
Case 2: sinx > cosx
⇒ tanx = 2 where x ∈ ( π4, 5π4)
∴ x = tan−1(2). Hence two solutions