The total number of solutions of |cotx|=cotx+1sinx,xϵ[0,3π], is equal to
A
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B 2 |cotx|=cotx+1sinx,xϵ[0,3π] If x∈[0,π2]∪[π,3π2]∪[2π,5π2] ⇒|cotx|=cotx So, cotx=cotx+1sinx⇒1sinx=0⇒sinx=±∞ but we know −1≤sinx≤1, thus there is no solution in this interval If x∈(π2,π)∪(3π2,2π)∪(5π2,3π] ⇒∣cotx∣=−cotx So, −cotx=cotx+1sinx⇒1sinx=−2cotx⇒2cotxsinx+1=0
⇒2cosx+1=0 ⇒cosx=−12 Therefore solutions in the given interval are, x=2π3,4π3 Hence, option 'B' is correct.