The total number of solutions of the equation cosx.cos2x.cos3x=14 in [0, π] is
6
cosx.cos2x.cos3x=14⇒4(cos3x.cosx)cos2x=1⇒2(cos4x+cos2x)cos2x=1⇒2(2cos22x−1+cos2x)cos2x=1⇒4cos32x+2cos22x−2cosx−1=0⇒2cos22x(2cos2x+1)−(2cos2x+1)=0⇒(2cos2x+1)(2cos22x+1)=0⇒cos4x.(2cos2x+1)=0cos4x=0, 2cos2x+1=04x(2n1+1)π2, n1 ∈Z cos2x=−12x=(2n1+1)π8, n1 ∈ Z 2x=2n2π±2π3,n2∈Z∴x=π8,π8,5π7,7π8 ∴x=π3,2π3
∴ The equation has 6 solutions.