The correct option is A 0
Equation of tangnet y=mx±√a2m2−b2
So a2m2−b2>0⇒ 9m2−4≥0
⇒ (3m−2)(3m+2)≥0
∴ m∈(−∞,−23]∪[23,∞)
Slope of given line is −52
∴ Slope of perpendicular tangnets is 25
Hence no perpedicular tangnet exists.
Alternate Solution:
Equation of the tangent to the hyperbola in parametric form is
xsecθ3−ytanθ2=1
∵ tangent is perpendicular to the line 5x+2y=3
∴2secθ3tanθ×−52=−1⇒sinθ=53
Hence no tangent possible