The total surface area of a right circular cone of slant height 13 cm is 90π cm2. Calculate :
(i) its radius in cm,
(ii) its volume in cm3, in terms of π.
Given : slant height , l=13cm.
Let, radius = r cm and height = h cm.
(i) Total surface area = πr(l+r)=[πr(13+r)] cm2.
πr(13+r)=90π
r2+13r−90=0
r2+18r−5r−90=0
r(r+18)−5(r+18)=0
(r+18)(r−5)=0
r=5,r=−18
r=5 [Neglecting r=-18, as radius cannot be negative]
Radius of the cone =5 cm.
(ii) Since, h = √l2−r2−√(13)2−(5)2
= √1692−252=√144 = 12 cm.
∴ Volume of the cone = 13πr2h=(13×π×5×5×12) cm3
=25π×4
= 100 π cm3.