The triangle ABC has angle B=90∘. When it is rotated about AB, it gives a cone of volume 800π. When it is rotated about BC, it gives a cone of volume 1920π. The length of AC is
Open in App
Solution
When rotated about AB, 13πx2y=800π⋯(1)
When rotated about BC, 13πy2x=1920π⋯(2)
Dividing (2) by (1), we get yx=19280=125 ⇒y=125x⋯(3)
Multiplying (1) and (2), we get 19π2x3y3=103⋅23⋅192π2 ⇒x3y3=103⋅23⋅32⋅3⋅64=103⋅23⋅33⋅43 ⇒xy=10⋅2⋅3⋅4=240
From (3), x⋅125x=240 ⇒x2=20×5=100 ⇒x=10 ∴y=125×10=24 ∴AC=√x2+y2=√102+242=26