y=x2−ax+2a⇒dydx=2x−a
Now point is (2,4), so dydx=4−a
Equation of normal at (2,4) is
y−4=−1dy/dx(x−2)⇒(a−4)(y−4)=(x−2)
⇒x−(a−4)y=18−4a
y−intercept :18−4a−(a−4)=4a−18a−4>0
⇒a∈(−∞,4)∪(92,∞) ⋯(1)
x−intercept :18−4a<0
⇒a>92 ⋯(2)
(1)∩(2), we get
a>92
Now, 12×∣∣∣4a−18a−4∣∣∣×|18−4a|=2
⇒(4a−18)2=4(a−4)
⇒a=5 (a≠174 as a>92)