The trigonometric equation 1−sinθ1+sinθ is equal to [Given, sin2θ+cos2θ=1]
A
(secθ+tanθ)2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(cotθ−tanθ)2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(secθ−tanθ)2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
(cosecθ−tanθ)2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C(secθ−tanθ)2 Multiplying both numerator and denominator by (1−sinθ).
1−sinθ1+sinθ=(1−sinθ)×(1−sinθ)(1+sinθ)×(1−sinθ)=(1−sinθ)21−sin2θ As we have sin2θ+cos2θ=1⇒1−sin2θ=cos2θ ∴(1−sinθ)×(1−sinθ)(1+sinθ)×(1−sinθ)=(1−sinθ)2cos2θ=(1−sinθcosθ)2=(1cosθ−sinθcosθ)2=(secθ−tanθ)2