The trigonometric form of z=(1−i cot8)3 (where i=√−1) is
cosec38.ei(24−3π2)
cosec38.e−i(24−3π2)
cosec38.ei(36−π2)
cosec28.e−(24i+π2)
z=(1−i cot8)3=cosec38(sin8−i cos8)3=cosec38(cos(π2−8)−i sin(π2−8))3=cosec38(cos(3π2−24)−i sin(3π2−24))=cosec38.e−i(3π2−24)=cosec38.ei(24−3π2)
The argument of 1−i1+i is
The value of cos−1(cos3π2) is
(a) π2 (b) 3π2 (c) 5π2 (d) 7π2
If x,yϵ(0,π2) and (cos x)sin y+1sin y=tan z, then z can lie in
If z=1+7i(2−i)2, then