The two adjacent sides of a cyclic quadrilateral are 2 and 5 and the angle between them is 60∘. If the area of the quadrilateral is 4√3, then the perimeter of the quadrilateral is:
A
12.5
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
13.2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
12
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
13
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C 12
⇒∠B+∠D=180o [ Sum of opposite angles of cyclic quadrilateral is 180o ]
⇒60o+∠D=180o
∴∠D=120o
Area of cyclic quadrilateral ABCD= Area of △ABC+ Area of △ACD
⇒4√3=12×AB×BCsin60o+12×CD×DAsin120o
⇒4√3=12×2×5×√32+12xy×√32
⇒4√3=√34(10+xy)
⇒16=10+xy
∴xy=6 ----- ( 1 )
⇒(AC)2=(AB)2+(BC)2−2AB×BCcos60o
=(2)2+(5)2−2×2×5×12
=4+25−10
=19 ----- ( 2 )
⇒(AC)2=(CD)2+(DA)2−2CD×DAcos120o
=x2+y2+xy ----- ( 3 )
Equating ( 2 ) and ( 3 )
⇒x2+y2+xy=19
⇒x2+y2+6yy=19 [ From ( 1 ) ]
⇒x2+y2=13
Now, substitute y=6x we get,
⇒x2+36x2=13
⇒x4−13x2+36=0
⇒x4−9x2−4x2+36=0
⇒x2(x2−9)−4(x2−9)=0
⇒(x2−9)(x2−4)=0
∴x=3,2
After substituting x in $( 1 ) we get,
y=2,3
Let x=3 and y=2
⇒ Perimeter of cyclic quadrilateral ABCD=2+5+3+2=12