The correct option is C 5
Let AD=2 and AB=5 and ∠DAB=60∘
Since the quadrilateral is cyclic, ∠BCD=120∘
Area of ΔABD=122.5.sin60∘=5√32⋯(i)
Area of ΔBCD=Area of quadrialteral ABCD− area of ΔABD
Area of ΔBCD=4√3−5√32=3√32⋯(ii)
Let CD=x and BC=y
So, area of ΔBCD=12x.y.sin120∘
⇒3√32=12x.y√32 (Using equation (ii))
⇒xy=6⋯(iii)
Now applying cosine rule in ΔBAD, we get
cos60∘=AD2+AB2−BD22AD.AB
⇒12=22+52−BD22.2.5⇒BD2=19
Again, applying cosine rule in ΔBCD, we get
cos120∘=x2+y2−192x.y=−12
⇒x2+y2+xy=19⇒x2+y2=13 (∵xy=6)
Now, x2+y2+2xy=13+12=25⇒(x+y)2=25⇒x+y=5