Given:The two adjacent sides of a parallelogram are 2^i−4^j−5^k and 2^i+2^j+3^k
Suppose →a=2^i−4^j−5^k and →b=2^i+2^j+3^k
Then any one diagonal of a parallelogram is →P1=→a+→b
→P1=→a+→b
=2^i−4^j−5^k+2^i+2^j+3^k=4^i−2^j−2^k
∴unit vector along the diagonal is
→P1∣∣→P1∣∣=4^i−2^j−2^k√16+4+4=4^i−2^j−2^k√24=4^i−2^j−2^k2√6=2^i−^j−^k√6
Another diagonal of a parallelogram is →P2=→b−→a
=2^i+2^j+3^k−2^i+4^j+^k=6^j+8^k
∴ unit vector along the diagonal is →P2∣∣→P2∣∣=6^j+8^k√36+64=6^j+8^k√100=6^j+8^k10=3^i+4^j5
Now,
→P1×→P2=∣∣
∣
∣∣^i^j^k4−2−2068∣∣
∣
∣∣
=^i(−16+12)−^j(32−0)+^k(24−0)
=−4^i−32^j+24^k
Area of parallelogam=12∣∣→P1×→P2∣∣=12×√16+1024+576=√16162=4√1012=2√101sq.units