Given, two adjacent sides of a parallelogram are 2 i ^ −4 j ^ +5 k ^ and i ^ −2 j ^ −3 k ^ .
Consider these adjacent sides as a → and b → .
a → =2 i ^ −4 j ^ +5 k ^ b → = i ^ −2 j ^ −3 k ^
Let the diagonal be c → .
c → = a → + b → c → =( 2 i ^ −4 j ^ +5 k ^ )+( 1 i ^ −2 j ^ −3 k ^ ) c → =( 2+1 ) i ^ −( 4+2 ) j ^ +( 5−3 ) k ^ c → =3 i ^ −6 j ^ +2 k ^
The magnitude of c → is,
| c → |= 3 2 + ( −6 ) 2 + 2 2 | c → |= 9+36+4 | c → |= 49 | c → |=7
Unit vector of c → is,
c ^ = 1 | c → | × c → c ^ = 1 7 ( 3 i ^ −6 j ^ +2 k ^ )
The area of parallelogram is | a → × b → |,
| a → × b → |=| i ^ j ^ k ^ 2 −4 5 1 −2 −3 | | a → × b → |= i ^ [ ( −3×−4 )−( −2×5 ) ]− j ^ [ ( 2×−3 )−( 1×5 ) ]+ k ^ [ ( −2×2 )−( −4×1 ) ] | a → × b → |= i ^ ( 12+10 )− j ^ ( −11 )+ k ^ ( −4+4 ) | a → × b → |=22 i ^ +11 j ^ +0 k ^
The magnitude of | a → × b → |is,
| a → × b → |= 22 2 + 11 2 | a → × b → |= 11 2 ( 2 2 +1 ) | a → × b → |=11 5
Thus, the area of parallelogram is 11 5 square units.