The two parabola y2=4ax and y2=4c(x−b) cannot have a common normal, other than the axis unless, if
According to the question...........
Parabolasis:y2=4ax−−−−−−(i)eqnofnormal,⇒y=mx−2am−am3y2=4c(x−b)−−−−−−(ii)eqnofnormal,⇒y=m(x−b)−2cm−cm3Now,takevalueofyfromeqn(i)&(ii)y⇒mx−2am−am3=m(x−b)−2cm−cm3⇒mx−2am−am3=mx−mb−2cm−cm3⇒2a+am2=b+2c+cm2⇒m2(a−c)=b+2c−2a⇒m2=b+2c−2aa−c⇒m2=ba−c+2(c−a)(a−c)=ba−c−2⇒m=√ba−c−2∴ba−c−2>0Commonnormal=ba−c>2.Soweprovethatbothparabolashavecommonnormalotherthanthex−axis.
and the correct option is B.