wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The two parabolas y2=4x and x2=4y intersect at a point P at which the abscissa is not equal to zero. Then,

A
both of them touch at P
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
they cut at right angles at P
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
the tangents at P make complementary angles with the x-axis
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is D the tangents at P make complementary angles with the x-axis
Solving y2=4x ........(1)
and x2=4y ....(2)
(x24)2=4xx416=4x.
x(x364)=0x=4y=4
P is a point (4,4)
The tangents at P to (1) and (2) are 4y=2(x+4) and 4x=2(y+4)
i.e., x2y+4=0 and 2xy4=0.
Then, slope m1=2 and m2=12
If θ1 and θ2 are the inclination of these with the xaxis
Then,
tan(θ1+θ2)=m1+m21m1m2

tan(θ1+θ2)=2+1212.12
θ1+θ2=π2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Line and Ellipse
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon