The two roots of an equation x3−9x2+14x+24=0 are in the ration 3 : 2. The roots will be
6, 4, -1
Let required roots are 3α,2α,β
(∵ ratio of two roots are 3:2)
∴∑α=3α+2α+β=−(−9)1=9
⇒5α+β=9 ⋯⋯(i)∑αβ=3α.2α+2α.β+β.3α=14⇒5αβ+6α2=14and ∑αβγ=3α.2α.β=−24
⇒6α2β=−24 or α2β=−4From (i),β=9 −5α,put the value of β in (ii)⇒5α(9−5α)+6α2=14⇒19α2−45α+14=0⇒(α−2)(19α−7)=0
∴α=2 or 719∴ from(i),if α=2, then β=9−5×2=−1
∵α=2,β=−1 satisfy the equation (iii) so required roots are 6, 4, –1.