The correct option is B 1.05×10−26 m/s
From Heisenberg’s uncertainty principle,
Δx. Δp ≥ h4π
Since, p = m.v,
Δp = m.(Δv) [Because mass is fixed]
Therefore,
⇒Δx.m.(Δv)≥h4π
where, h = Planck’s constant
Δx = Uncertainty in position = 10−4 mm = 10−7 m
Δv = Uncertainty in velocity
m = Mass of the ball in kilograms = 50×10−3 kg
So, Δv≥h4π.m.Δx ....(1)
Putting up the values in eq. (1)
Δv≥6.62×10−344×3.14×50×10−3×10−7Δv≥1.05×10−26 m/s