The unit vector parallel to the resultant of the vectors →A=4^i+3^j+6^k and →B=−^i+3^j−8^k is
17(3^i+6^j−2^k)
17(3^i+6^j+2^k)
149(3^i+6^j−2^k)
149(3^i−6^j+2^k)
Resultant of vectors →A and →B →R=→A+→B=4^i+3^j+6^k−^i+3^j−8^k →R=3^i+6^j−2^k ^R=→R|→R|=3^i+6^j−2^k√32+62+(−2)2=3^i+6^j−2^k7
Let →a=17(2^i+3^j+6^k),→b=17(6^i+2^j−3^k),→c=c1^i+c2^j+c−3^k and matrix A=⎡⎢ ⎢ ⎢⎣2737676727−37c1c2c3⎤⎥ ⎥ ⎥⎦ If AAT=I, then →c is equal to