Given that,
α=tan−135tanα=35
And we know that In the above figure,
tanβ=ACOA=h4×40=h160
Now, In ΔAOB,
tan(α+β)=ABOA=h40
⇒tan(α+β)=tanα+tanβ1−tanαtanβ
⇒h40=h160+351−h160×35
⇒h40=h+96160800−3h800
⇒h40=h+96160×800800−3h
⇒h40=5(h+96)800−3h
⇒800h−3h2=200(h+96)
⇒800h−3h2=200h+19200
⇒3h2−600h+19200=0
⇒h2−200h+6400=0
⇒(h−160)(h−40)=0
⇒h−160=0,h−40=0
⇒h=160andh=40
Hence h=40m. be the height of pole and less then 100m.