The value ∫π/20(sinx)√2+1dx∫π/20(sinx)√2−1dx is
I1=∫π20sin√2+1xdx=∫π20sin√2x.sinxdxI2=∫π20sin√2−1xdx
Applying integration by parts on I1
I1=((sinx)√2∫sinxdx)π20−∫π20(√2sin√2−1xcosx∫sinxdx)dxI1=−(cosxsin√2x)π20−∫π20(√2sin√2−1xcosx(−cosx)I1=−(cosxsin√2x)π20+∫π20(√2sin√2−1xcos2x)dxI1=−(cosxsin√2x)π20+√2∫π20sin√2−1x(1−sin2x)dxI1=−(cosxsin√2x)π20+√2(∫π20sin√2−1x+∫π20sin√2+1xI1=0+√2(I2+I1)(1−√2)I1=√2I2I1I2=√2(1−√2)=√2(1−√2)(1−√2)(1−√2)=2−√2
So option D is correct