We have,
I=∫20[x2−x+1]dx
Where [.] denotes greatest integer function.
Since,
[x2−x+1]=1,x∈[0,1)
[x2−x+1]=3,x∈(1,2]
Therefore,
I=∫101dx+∫213dx
I=[x]10+[3x]21
I=1−0+3(2−1)
I=1+3
I=4
Hence, the value is 4.