1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Monotonicity in an Interval
The value of ...
Question
The value of
∫
0
π
/
2
log
4
+
3
sin
x
4
+
3
cos
x
d
x
is
(a) 2
(b)
3
4
(c) 0
(d) −2
Open in App
Solution
(c) 0
Let
I
=
∫
0
π
2
log
4
+
3
sin
x
4
+
3
cos
x
d
x
.
.
.
(
i
)
=
∫
0
π
2
log
4
+
3
sin
π
2
-
x
4
+
3
cos
π
2
-
x
d
x
=
∫
0
π
2
log
4
+
3
cos
x
4
+
3
sin
x
d
x
.
.
.
(
ii
)
Adding
(
i
)
and
(
ii
)
2
I
=
∫
0
π
2
log
4
+
3
sin
x
4
+
3
cos
x
+
l
og
4
+
3
cos
x
4
+
3
sin
x
d
x
=
∫
0
π
2
log
4
+
3
sin
x
4
+
3
cos
x
×
4
+
3
cos
x
4
+
3
sin
x
d
x
=
∫
0
π
2
log
1
d
x
=
0
Hence
I
=
0
Suggest Corrections
0
Similar questions
Q.
The value of
is
A. 2
B.
C. 0
D.