wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The value of 0πx tan xsec x+cos x dx is
(a) π24

(b) π22

(c) 3π22

(d) π23

Open in App
Solution

a π24π24

Let I=0πxtanxsecx+cosxdx (i)=0ππ-xtanπ-xsecπ-x+cosπ-xdx=0ππ-xtanxsecx+cosx dx (ii)Adding (i) and (ii)2I=0πxtanxsecx+cosx+π-xtanxsecx+cosxdx =0ππ tanxsecx+cosxdx =π0πsinx1+cos2x dx =-πtan-1cosx0π =-π-π4-π4=π22Hence I=π24We have, I=0πx tanxsecx+cosxdx .....1=0ππ-xtanπ-xsecπ-x+cosπ-xdx=0ππ-xtanxsecx+cosx dx .....2Adding 1 and 2, we get2I=0πxtanxsecx+cosx+π-xtanxsecx+cosxdxI=120ππ tanxsecx+cosxdx =π20πsinx1+cos2x dxPutting cos x=t-sinx dx=dtsinx dx=-dtWhen x0; t1and xπ; t-1I=π21-1-dt1+t2=π2-11dt1+t2=π2tan-1t-11=π2tan-11-tan-1-1=π2π4--π4=π2×π2=π24Hence I=π24

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Differentiating Inverse Trignometric Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon