wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The value of 2π0 sin100 x cos99 x dx is equal to

Open in App
Solution

We have,
Let f(x)= sin100 x cos99 xf(2πx)=sin100 (2πx) cos99 (2πx)f(2πx)= sin100 x cos99 x=f(x)2π0 sin100 x cos99 x dx=2 π0 sin100 x cos99 x dx(As 2a0 f(x) dx=2 a0 f(x) dx, if f(2ax)=f(x)]Let I=2 π0 sin100 x cos99 x dx=2 π0 sin100 (πx) cos99 (πx) dx=2 π0 sin100 x cos99 x dx=I.I=I2 I=0 I=0

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon