The correct option is D n(n+1)2, when n is odd
Clearly, nth term of the given series is negative or positive accordingly as n is even or odd, respectively.
Case 1:n is even
12−22+32−42+52−62+…+(n−1)2−n2
=(12−22)+(32−42)+(52−62)+…+((n−1)2−n2)=(1−2)(1+2)+(3−4)(3+4)+(5−6)(5+6)+…+((n−1)−n)(n−1+n)
=−(1+2+3+4+…+(n−1)+n)
=−n(n+1)2
Case 2:n is odd
(12−22)+(32−42)+…+{(n−2)2−(n−1)2}+n2
=(1−2)(1+2)+(3−4)(3+4)+…+[(n−2)−(n−1)][(n−2)+(n−1)]+n2
=−(1+2+3+4+…+(n−2)+(n−1))+n2
=n(n+1)2