The correct option is C 4927
Let S=1+47+972+1673+2574+⋯upto ∞ ...(1)
17S=17+472+973+1674+2575+⋯upto ∞ ...(2)
Subtracting eqn (2) from eqn (1), we get
67S=1+37+572+773+974+⋯upto ∞ ...(3)
Multiplying eqn (3) by 17, we get
672S=17+372+573+774+⋯upto ∞ ...(4)
Subtracting eqn (4) from eqn (3), we get
3649S=1+27+272+273+⋯upto ∞
⇒3649S=1+27(11−1/7)
∴S=4927