The value of 1+sin2π9+icos2π91+sin2π9-icos2π93 is
-121-i3
121-i3
-123-i
123-i
Explanation for the correct answer:
Find the value of the given trigonometric expression
Let S=1+sin2π9+icos2π91+sin2π9-icos2π93
⇒ S=1+cosπ2-2π9+isinπ2-2π91+cosπ2-2π9-isinπ2-2π93 ; [∵sinπ2-x=cosx][∵cosπ2-x=sinx]
⇒ S=1+cos5π18+isin5π181+cos5π18-isin5π183
⇒ S=1+2cos25π36-1+2isin5π36cos5π361+2cos25π36-1-2isin5π36cos5π363 ; [∵cos2x=2cos2x-1][∵sin2x=2sinxcosx]
⇒ S=2cos5π36cos5π36+isin5π362cos5π36cos5π36-isin5π363
⇒ S=e5iπ36e-5iπ363 ; [∵eiθ=cosθ+isinθ]
⇒ S=e5iπ183
⇒ S=ei5π6
Replace, ei5π6=cos5π6+isin5π6, we get,
⇒ S=cos5π6+isin5π6
⇒ S=-32+i2
⇒ S=-123-i.
Hence, option C, -123-i is the correct answer.