1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Fundamental Laws of Logarithms
The value of ...
Question
The value of
∫
1
x
+
x
log
x
d
x
is
(a) 1 + log x
(b) x + log x
(c) x log (1 + log x)
(d) log (1 + log x)
Open in App
Solution
(d) log (1 + log x)
Let
I
=
∫
d
x
x
+
x
log
x
⇒
∫
d
x
x
1
+
log
x
Putting
1
+
log
x
=
t
⇒
1
x
d
x
=
d
t
∴
I
=
∫
d
t
t
=
ln
t
+
C
=
ln
1
+
log
x
+
C
Suggest Corrections
0
Similar questions
Q.
If
x
y
=
e
x
-
y
,
then
d
y
d
x
is
(a)
1
+
x
1
+
log
x
(b)
1
-
log
x
1
+
log
x
(c) not defined
(d)
log
x
1
+
log
x
2
Q.
The value of
log
x
+
log
(
1
+
1
x
)
+
log
(
1
+
1
1
+
x
)
+
log
(
1
+
1
2
+
x
)
+
…
…
…
+
log
(
1
+
1
(
n
−
1
+
x
)
)
Q.
If
x
y
=
e
x
e
y
,
then
d
y
d
x
=
Q.
e
x
−
y
=
x
y
,
t
h
e
n
d
y
d
x
=