The value of 21!+2+42!+2+4+63!+.... is
e
2e
3e
none of these
Explanation for the correct answer:
Let S=21!+2+42!+2+4+63!+....
=21!+62!+123!+.......
The nth term of this summation can be written as
tn=nn+1n!
⇒ tn=n+1n-1!
⇒ tn=n-1+2n-1!=n-1n-1!+2n-1!
⇒ tn=1n-2!+2n-1!
We cannot substitute n=1 as -1! is not defined
∴ S=21!+∑i=2ntn
⇒ S=2+∑i=2n1(n-2)!+2∑i=2n1n-1!
⇒ S=2+10!+11!+12!+....+211!+12!+13!+....
We know that
ex=1+x1!+x22!+x33!+...
Substitute x=1
e=1+1+12!+13!+.....
⇒ S=2+e+2e-1
⇒ S=3e
Hence, the value of 21!+2+42!+2+4+63!+.... is 3e.
Hence, option C is the correct answer.
If f=x1+x2+13(x1+x2)3+15(x1+x2)5+... to ∞ and g=x−23x3+15x5+17x7−29x9+..., then f=d×g. Find 4d.