The value of 2 cos θ−cos 3θ−cos 5θ−16 cos3θ sin2 is
0
We have,
2 cos θ−cos 3θ−cos 5θ−16 cos3 θ sin2 θ=2 cos θ−3θ−cos 5θ−16[cos 3θ+3 cos θ4×(1−cos 2θ)2]=2 cos θ−cos 3θ−cos 5θ−2[(cos 3θ+3 cos2θ)]=2 cosθ−cos3θ−cos5θ−2[cos3θ−cos3θ cos2θ+3cosθ−3cosθ cos2θ]=2 cosθ−cos 3θ−cos5θ−2[cos3θ+cos3θ]+2cos3θ cos2θ+3[2 cosθ cos 2θ]=2 cosθ−cos3θ−cos5θ−2[cos 3θ+cos 3θ]+cos 5θ+cos θ+3cos 3θ+3 cosθ[2 cos A cos B=cos (A+B)+cos (A−B)]
=2 cos θ−cos 3θ−cos 5θ−2 cos3θ−6 cos θ+cos 5θ+cos θ+3 cos 3θ+3 cos θ
= 0