The value of 2(sin6θ+cos6θ)−3(sin4θ+cos4θ)+1 is
We have,
2(sin6θ+cos6θ)−3(sin4θ+cos4θ)+1
=2[(sin2θ)3+(cos2θ)3]−3(sin4θ+cos4θ)+1
=2[(sin2θ+cos2θ)(sin4θ+cos4θ−sin2θcos2θ)]−3(sin4θ+cos4θ)+1
=2[sin4θ+cos4θ−sin2θcos2θ]−3(sin4θ+cos4θ)+1
=2sin4θ+2cos4θ−2sin2θcos2θ−3sin4θ−3cos4θ+1
=−sin4θ−cos4θ−2sin2θcos2θ+1
=−(sin4θ+cos4θ+2sin2θcos2θ)+1
=−(sin2θ+cos2θ)2+1
=−1+1
=0
Hence, this is the answer.