The value of 2(nC0)+32(nC1)+43(nC2)+54(nC3)+⋯ is
2n(n+3)−1n+1
(1+x)n=nC0+nC1x+nC2x2+nC3x3⋯nCnxn on Integrating from 0 to 1
(1+x)n+1−1n+1=nC0x+nC1x22+nC2x33+nc3x44⋯
Multiplying with x & differentiating
ddx{x((1+x)n+1−1n+1)}=ddx{nC0x2+nC1x32+nC2x43+nC3x55⋯}(1+x)n+1+x(n+1)(1+x)n−1n+1=2nC0x+3nC1x22+4nC2x33⋯
put x=1
2n+1+(n+1)2n−1n+1=2nC0+32 nC1+43 nC2+⋯=2n(n+3)−1n+1