The value of 2sin6θ+cos6θ-3sin4θ+cos4θ+1 is
2
0
4
6
Explanation for the correct answer:
Let S=2sin6θ+cos6θ-3sin4θ+cos4θ+1
⇒ S=2sin2θ3+cos2θ3-3sin2θ2+cos2θ2+1 ∵a3+b3=a+b3-3aba+b,a2+b2=a+b2-2ab
⇒ S=2sin2θ+cos2θ3-3sin2θcos2θsin2θ+cos2θ-3sin2θ+cos2θ2-2sin2θcos2θ+1 ∵sin2θ+cos2θ=1
⇒ S=21-3sin2θcos2θ-312-2sin2θcos2θ+1
⇒ S=2-6sin2θcos2θ-3+6sin2θcos2θ+1
⇒ S=0
Hence, the value of 2sin6θ+cos6θ-3sin4θ+cos4θ+1 is 0.
Hence, option B is the right answer.