wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The value of 2 sin2 B + 4 cos (A + B) sin A sin B + cos 2 (A + B) is

(a) 0
(b) cos 3 A
(c) cos 2 A
(d) None of these

Open in App
Solution

(c) cos 2A

2sin2B+4cos(A+B) sinA sinB+cos2(A+B)=2sin2B+4cosAcosB sinA sinB-4sin2A sin2B+cos(A+B+A+B)=2sin2B+4cosAcosB sinA sinB-4sin2A sin2B+cos2(A+B)-sin2(A+B) Using cos(x+x)=cos2x-sin2x=2sin2B+4cosAcosB sinA sinB-4sin2A sin2B+cos2Acos2B+sin2A sin2B-2cosA cosB sinA sinB-sin2A cos2B-cos2A sin2B-2sinA sinB cos A cos =sin2B+sin2B-3 sin2A sin2B+cos2Acos2B-sin2A cos2B-cos2A sin2B=1-cos2B-3sin2A sin2B+sin2B+cos2A cos2B-sin2A cos2B-cos2A sin2B=1+sin2B(1-cos2A)-3sin2A sin2B-cos2B(1-cos2A)-sin2A cos2B=1+sin2B sin2A-3sin2A sin2B-sin2A cos2B-cos2B sin2A=1-2 sin2A(sin2B+cos2B)=1-2 sin2A=cos2A-sin2A= cos2A

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon