The correct option is B cos−1(acosθ+ba+bcosθ)
2tan−1[√a−ba+btanθ2]
=cos−1⎡⎢
⎢
⎢
⎢⎣1−(a−ba+b)tan2θ21+(a−ba+b)tan2θ2⎤⎥
⎥
⎥
⎥⎦
[∵2tan−1x=cos−11−x21+x2]
=cos−1⎡⎢
⎢
⎢⎣(a+b)−(a−b)tan2θ2(a+b)+(a−b)tan2θ2⎤⎥
⎥
⎥⎦
=cos−1⎡⎢
⎢
⎢
⎢⎣a(1−tan2θ2)+b(1+tan2θ2)a(1+tan2θ2)+b(1−tan2θ2)⎤⎥
⎥
⎥
⎥⎦
=cos−1⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣a(1−tan2θ2)1+tan2θ2+ba+b⎛⎜
⎜
⎜⎝1−tan2θ21+tan2θ2⎞⎟
⎟
⎟⎠⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
=cos−1[acosθ+ba+bcosθ]