wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The value of 2000C2+2000C5+2000C8+...+2000C2000=?

A. 21999+13

B. 2199913

C. 22000+13

D. 2200013

A
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

We know that.

(1+x)n=nC0+nC1x+nC2x2+nC3x3+.....nCnxn

Now, put x=1

(1+1)n=nC0+nC1(1)+nC2(1)2+nC3(1)3+.....nCn(1)n

2n=nC0+nC1+nC2+nC3+.....nCn-----(1)

Put x=ω in (1+x)n=nC0+nC1x+nC2x2+nC3x3+.....nCnxn

(1+ω)n=nC0+nC1(ω)+nC2(ω)2+nC3(ω)3+.....nCn(ω)n

ω(1+ω)n=ωnC0+nC1(ω)2+nC2(ω)3+nC3(ω)4+.....nCn(ω)n+1-----(2)

Put x=ω2 in (1+x)n=nC0+nC1x+nC2x2+nC3x3+.....nCnxn

(1+ω2)n=nC0+nC1(ω2)+nC2(ω)4+nC3(ω)6+.....nCn(ω)2n

ω2(1+ω2)n=nC0ω2+nC1(ω4)+nC2(ω)6+nC3(ω)8+.....nCn(ω)2n+2

-----(3)

Now add eq (1), eq(2) and eq(3),

2n+ω(1+ω)n+ω2(1+ω)n=nC0(1+ω+ω2)+nC1(1+ω+ω2)+3nC2+nC3(1+ω+ω2)+nC4(1+ω+ω2)+3nC2+.........+3nC2+3k

Since, 1+ω+ω2=0

2n+ω(1+ω)n+ω2(1+ω)n=nC0(0)+nC1(0)+3nC2+nC3(0)+nC4(0)+3nC2+.........+3nC2+3k

2n+ω(1+ω)n+ω2(1+ω)n=3nC2+3nC5+.........+3nC(2+3k)

2n+ω(1+ω)n+ω2(1+ω)n3=nC2+nC5+.........+nC(2+3k)

Now, lets take n=2000

22000+ω(1+ω)2000+ω2(1+ω2)20003= 2000C2+2000C5+.........+2000C2000

22000+ω((1+ω)2)1000+ω2(ω)20003= 2000C2+2000C5+.........+2000C2000

22000+ω(ω2)2000+ω2(ω)20003= 2000C2+2000C5+.........+2000C2000

22000+ω(ω)4000+ω2(ω)20003= 2000C2+2000C5+.........+2000C2000

22000+ω(ω)+ω2(ω)23= 2000C2+2000C5+.........+2000C2000

22000+ω2(1+ω2)3= 2000C2+2000C5+.........+2000C2000

22000+ω2(ω)3= 2000C2+2000C5+.........+2000C2000

22000ω33= 2000C2+2000C5+.........+2000C2000

2200013= 2000C2+2000C5+.........+2000C2000

Hence, option D is correct.


flag
Suggest Corrections
thumbs-up
7
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties of Coefficients
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon