The value of 2000C2+2000C5+2000C8+...+2000C2000=?
A. 21999+13
B. 21999−13
C. 22000+13
D. 22000−13
We know that.
(1+x)n=nC0+nC1x+nC2x2+nC3x3+.....nCnxn
Now, put x=1
⇒(1+1)n=nC0+nC1(1)+nC2(1)2+nC3(1)3+.....nCn(1)n
⇒2n=nC0+nC1+nC2+nC3+.....nCn-----(1)
Put x=ω in (1+x)n=nC0+nC1x+nC2x2+nC3x3+.....nCnxn
⇒(1+ω)n=nC0+nC1(ω)+nC2(ω)2+nC3(ω)3+.....nCn(ω)n
⇒ω(1+ω)n=ωnC0+nC1(ω)2+nC2(ω)3+nC3(ω)4+.....nCn(ω)n+1-----(2)
Put x=ω2 in (1+x)n=nC0+nC1x+nC2x2+nC3x3+.....nCnxn
⇒(1+ω2)n=nC0+nC1(ω2)+nC2(ω)4+nC3(ω)6+.....nCn(ω)2n
⇒ω2(1+ω2)n=nC0ω2+nC1(ω4)+nC2(ω)6+nC3(ω)8+.....nCn(ω)2n+2
-----(3)
Now add eq (1), eq(2) and eq(3),
2n+ω(1+ω)n+ω2(1+ω)n=nC0(1+ω+ω2)+nC1(1+ω+ω2)+3nC2+nC3(1+ω+ω2)+nC4(1+ω+ω2)+3nC2+.........+3nC2+3k
Since, 1+ω+ω2=0
⇒2n+ω(1+ω)n+ω2(1+ω)n=nC0(0)+nC1(0)+3nC2+nC3(0)+nC4(0)+3nC2+.........+3nC2+3k
⇒2n+ω(1+ω)n+ω2(1+ω)n=3nC2+3nC5+.........+3nC(2+3k)
⇒2n+ω(1+ω)n+ω2(1+ω)n3=nC2+nC5+.........+nC(2+3k)
Now, lets take n=2000
⇒22000+ω(1+ω)2000+ω2(1+ω2)20003= 2000C2+2000C5+.........+2000C2000
⇒22000+ω((1+ω)2)1000+ω2(−ω)20003= 2000C2+2000C5+.........+2000C2000
⇒22000+ω(−ω2)2000+ω2(ω)20003= 2000C2+2000C5+.........+2000C2000
⇒22000+ω(ω)4000+ω2(ω)20003= 2000C2+2000C5+.........+2000C2000
⇒22000+ω(ω)+ω2(ω)23= 2000C2+2000C5+.........+2000C2000
⇒22000+ω2(1+ω2)3= 2000C2+2000C5+.........+2000C2000
⇒22000+ω2(−ω)3= 2000C2+2000C5+.........+2000C2000
⇒22000−ω33= 2000C2+2000C5+.........+2000C2000
⇒22000−13= 2000C2+2000C5+.........+2000C2000
Hence, option D is correct.