The value of C1-C11021+C2-C21021+C3-C31021+C4-C41021+......+C10-C101021 is
221-210
220-29
220-210
221-211
Explanation for the correct answer:
On rearranging the terms of the given expression we get,
C1-C11021+C2-C21021+C3-C31021+......+C10-C101021=C1+C221+.....+C102121-C110+C210+....+C1010 ...(i)
We know, the sum of C1+C2n+C3n+.....+Cnnn=2n-1
⇒ C1+C210+C310+.....+C101010=210-1 ...(ii)
C1+C221+.....+C102121=12C1×2+C2×221+.....+C102121×2
We know that, Cr=Cn-rnn
⇒ C1=C20,2121C2=C1921,......,C1021=C112121
⇒ 12C1×2+C2×221+.....+C102121×2=12C1+C22121+...+C1021+C11+C122121+....+C2021
=12C1+C22121+...+C1021+C11+C122121+....+C20+C212121-C2121
=12221-1-21!21! ∵C1+C2+21.....C212121=221-1
=12221-2
=220-1 ...(iii)
From (i),(ii),(iii) we get,
C1-C11021+C2-C21021+C3-C31021+C4-C41021+......+C10-C101021=220-1-210+1
=220-210
Hence, option C, 220-210 is the correct answer.
The order of the differential equation whose generalsolution is
y=C1ex+C2e2x+C3e3x+C4ex+C5 where C1,C2,C3,C4,C5 are arbitraryconstant is-