The correct option is A 17×214−31
let's expand the (1+x)15
(1+x)15=15C0+15C1x+15C2x2+⋯+15C15x15
Multiply by x on both the sides
⇒x(1+x)15=15C0x+15C1x2+15C2x3+15C3x4+…+15C15x16
Differentiating w.r.t. x on both sides, we get
⇒15x(1+x)14+(1+x)15=15C0+2⋅15C1x+3⋅15C2x2+4⋅15C3x3+…+16⋅15C15x15
By putting x=1, we get
⇒15×214+215=15C0+2⋅15C1+3⋅15C2+4⋅15C3+…+16⋅15C15
⇒214(15+2)−15C0−2⋅15C1=3⋅15C2+4⋅15C3+…+16⋅15C15
⇒17×214−31=3⋅15C2+4⋅15C3+…+16⋅15C15
Hence, the correct answer is Option b.