Consider the given trigonometric expression.
⇒3[sin4t+cos4t−1sin6t+cos6t−1]
We know that,
sin2θ+cos2θ=1
Now,
sin4t+cos4t=(sin2t+cos2t)2−2sin2tcos2t
sin4t+cos4t=1−2sin2tcos2t ……. (1)
Again,
sin6t+cos6t=(sin2t+cos2t){sin4t+cos4t−sin2tcos2t}
sin6t+cos6t=1{(sin2t+cos2t)2−2sin2tcos2t−sin2tcos2t}
sin6t+cos6t=1−3sin2tcos2t …… (2)
Substitute values from equations (1) and (2) in the given expression.
⇒3[sin4t+cos4t−1sin6t+cos6t−1]
⇒3[1−2sin2tcos2t−11−3sin2tcos2t−1]
⇒3[−2sin2tcos2t−3sin2tcos2t]
⇒3×(23)
⇒2
Hence, this is the required
result.