The value of 3[sin4(3π2−x)+sin4(3π+x)]−2[sin6(π2+x)+sin6(5π−x)] for all permissibly value of x , is
3[sin4(3π2−α)+sin4(3π+α)] - [sin6(π2+α)+sin6(5π−α)] =
The expression 3[sin4(3π2−α)+sin4(3π+α)]−2[sin6(π2+α)+sin6(5π+α)] is equal to